Sequence-to-Sequence
Modeling & Attention

Large Language Models: Introduction and Recent Advances

ELL881 - AIL821

Tanmoy Chakraborty
Associate Professor, lIT Delhi
https://tanmoychak.com/

Slides are adopted from the Stanford course ‘NLP with DL’ by C. Manning and
UMass course ‘Advanced NLP’ by M lyyer

https://tanmoychak.com/

Along with the Gemma 2
2B model, they have also
released ShieldGemma,
a suite of safety content
classifier models to filter
the input and outputs of
Al models and keep the
user safe, and Gemma
Scope, a new model
interpretability tool that
offers unparalleled insight
into our models' inner
workings.

Released on July 31, 2024
Gemma 2 2B released! Google Developers Blog

Google Deepmind releases this 2B model of
Gemma 2 family, prioritizing safety and accessibility.

This 2B model is also trained
using distillation from larger
models.

Gemma 2 2B surpasses larger
models like GPT-3.5 Turbo, Mixtral,
Llama 2 70b on the LMSYS Chatbot

Arena leaderboard, demonstrating
its exceptional conversational Al
abilities.

https://developers.googleblog.com/en/smaller-safer-more-transparent-advancing-responsible-ai-with-gemma/
https://huggingface.co/collections/google/gemma-scope-release-66a4271f6f0b4d4a9d5e04e2
https://huggingface.co/collections/google/gemma-scope-release-66a4271f6f0b4d4a9d5e04e2

Sequence-to-Sequence
Modeling

Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural
network.

* The neural network architecture is called sequence-to-sequence (aka seq2seq) and it
involves two RNNSs.

LLMs: Introduction and Recent Advances IT.CS'EI Tanmoy Chakraborty

LABORATORY FOR
CONPUTATI YBTENS

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Neural Machine Translation (NMT)

The Sequence-to-Sequence Model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.

Encoder RNN
50;;0

entar tej

v
Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Neural Machine Translation (NMT)

The Sequence-to-Sequence Model Decoder RNNis a
| Target sentence (output) Language Model that
Encodmg of'th't-:j slohul;cde sentence. p A \ generates target
Provides initial hidden state he hit me with @ pie <END> sentence, conditioned
for Decoder RNN. .
on encoding.
\ S £ £ £ £ £ £
e oD 0 o0 g0 b 6 50 O
Z J— 1y} 1] (18] 4] (1Y) Y] 4y (g»]
o o) 0 o) O o) o) o} o) o) o) S
T 1@ @l |0 JOL[= JO| =[O - |O) (0 0] Q.
- 1@ @l |0 10| (o 10| |0 o -0 (0 @®
O [@ @] 0) O o @) (@ o -
U r
C l [| [T “ T T -
L =
\” m’ g entarte, <START> he hit me with a pie

v
Source sentence (input)

Encoder RNN produces an encoding of the source sentence.

LLMs: Introduction and Recent Advances -- / ; m Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence is Versatile!

* The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation
* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MT

* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text > short text)
* Dialogue (previous utterances > next utterance)
* Parsing (input text - output parse as sequence)
* Code generation (natural language > Python code)

LLMs: Introduction and Recent Advances slg] VBT el 99ty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a Conditional Language Model
* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

* NMT directly calculates P(y|x)

P(yl.’lﬁ) — P(y1|$) P(y2|y1,$) P(y3|y11y21 :B) - - 'kp(yleln SR 3yT—17:B2
Y
Probability of next target word, given
target words so far and source sentence x

* How to train an NMT system?

@% LLMs: Introduction and Recent Advances \ ' m VBT el 99ty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Training an NMT System

= negative log = negative log = negative log
1 T prob of “he” prob of “with"” prob of <END>
Seq2seq is optimized as a J= ?th = Iuj+ 2 + 13+ Jaf+ Js + J6 + J7
. . =1 7 A A) A A)
single system. Backpropagation
operates “end-to-end”.
1 V2 V3 Va Vs Yo V7
M F. 3 M M M M M
= O
< o
o o T] ol [e] [o] [e] [e o] 0 S
5 e) Jol ol o] ol Jo| ol Je o
- 10 @ 10 O o1 710 o 10O o @
Q o 0 o) 0 o| |o o o| |o -
Q
c =
il m’ a entarte <START> he hit me with a pie
N J \ J
Y Y
Source sentence (from corpus) Target sentence (from corpus)

=) LLMs: Introduction and Recent Advances % Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Greedy decoding

* We saw how to generate (or “decode”) the target sentence by taking argmax on each step
of the decoder.

he hit me with a pie <END>
& S £ £ = £ £

o L omf i o o L om L om i o

(4] © © © © © ©

ol: [o]: o] [o]: [e]: [o]: (o
ol :.lo| :lo| ilo| le| i|o| o
o| 10| T|Oo| 7|0 0] o (@)
o o o o o o o
T T T |

<START> he hit me with a pie

* Thisis greedy decoding (take most probable word on each step)

* Problems with this method?

@% LLMs: Introduction and Recent Advances] VBT el 99ty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Problems With Greedy Decoding

Greedy decoding has no way to undo decisions!

Input: il a m’entarté (he hit me with a pie)
> he
>hehit____
>hehita (whoops!no going back now...)

How to fix this?

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Exhaustive Search Decoding

* |deally we want to find a (length T) translation y that maximizes

P(y|z) = P(y1|x) P(yz2|y1, z) P(ysly1,y2, %) ..., Plyr|y1,- .-, Y7—1,)

T
— HP(ytlyla <. 7yt—17w)
t=1

* We could try computing all possible sequences y

e This means that on each step t of the decoder, we’re tracking V* possible partial
translations, where Vis vocab size

* This O(VT) complexity is far too expensive!

LLMs: Introduction and Recent Advances IT.CS'«@I Tanmoy Chakraborty

LABORATORY FOR
CONPUTATI YBTENS

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Beam Search Decoding

* Coreidea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)
* kisthe beam size (in practice around 5 to 10)

* Ahypothesis y,, ..., ¥+ has a score which is its log probability:

t
score(yi, ..., yt) = log PLm(y1, - - -, ye|x) = ZlogPLM(yi|y1, a5 Wi—15)

i=1
* Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

* Beam search is not guaranteed to find optimal solution
* But much more efficient than exhaustive search!

LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Beam Search Decoding: Example

Beam size=k = 2.

<START>

Calculate prob
distribution of next word

t
Beam size = k = 2. Blue numbers =score(yi,...,y:) = Z log PLv(¥ilyt, - - -5 Yi-1,)

=1

-0.7 =log P (he|<START>)

/h'e

<START>

\/

-0.9 = log Pyy (/| <START>)

Take top k words
and compute scores

t
Beam size = k = 2. Blue numbers =score(y1, ..., y:) = Y _log Pom(ilys, - - -

=1

-1.7 =log P (hit|<START> he) + -0.7

_0.7 hit
he <
struck
/ -2.9 = log P \(struck|<START> he) +-0.7
<START>
\ -1.6 = log P \,(was|<START> 1) + -0.9
was
/ <
ot
-0.9 J

-1.8 = log P\,(got|<START> 1) + -0.9

For each of the k hypotheses, find
top k next words and calculate scores

,yz'—hfb‘)

t
Beam size =k = 2. Blue numbers = score(y1, ..., y:) = Z log PLm(Yilyas - - - Yi-1,T)

i=1

-1.7
‘0.7 h,'t

he <
struck
/ 2.9

<START>

-1.6

\ was
/ <

ot

_O g

-1.8

9

Of these k2 hypotheses,
just keep k with highest scores

t
Beam size =k = 2. Blue numbers =score(ys, ..., y:) = » _log Pum(yilys, - - -

-0.

7

i=1

-2.8 =log P, (a|<START> he hit) +-1.7

/h'e

<START>

\I

9

-1.7 a
TEN'g

me

struck -2.5 = log P, (me| <START> he hit) + -1.7

-2.9

-2.9 =log P\, (hit| <START> | was) + -1.6
e hit
was <

struck

got

-3.8 = log P y(struck|<START> | was) + -1.6
-1.8

For each of the k hypotheses, find
top k next words and calculate scores

7yi—17x)

t
Beam size = k = 2. Blue numbers =score(yi, ..., yt) = Z log PLm(¥ily1s - - - s Yi—1,2)

i=1

-2.8

-1.7 a
'0.7 hl‘t <
he < me
/ struck 5
-2.9

<START> -2.9

\ O hit
was <
/ < struck
ot
_O g

9 -3.8
-1.8

Of these k2 hypotheses,
just keep k with highest scores

t
Beam size = k = 2. Blue numbers =score(y1, ..., 4:) = » _log Pum(¥ily1, - - -, ¥i-1,2)

=1
tart
2.8 _
_1.7 a ple
0.7 bt < 3.4
< me

he 3.3
/ struck 5 ith
-2.9
<START> -2.9 on

\ 1o hit 35
was <
/ < struck
ot
_O g

9 -3.8
-1.8

For each of the k hypotheses, find
top k next words and calculate scores

t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - - Yi-1,)

=1
tart
2.8 .
1.7 g pie
0.7 bt < 3.4
< me

he 3.3
/ struck 5 ith
-2.9
<START> -2.9 on

\ 1o hit 35
was <
/ < struck
ot
_O g

9 -3.8
-1.8

Of these k2 hypotheses,
just keep k with highest scores

t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - - Yi-1,)

-0.7

/h'e

<START>

\I

9

=1
-4.0 -4.8
tart in
2.8 . ,
17 pie » with
' a
hit -3.4 -4.5
p me 3.3 3.7
struc)
2.5 with > a
-2.9
2.9 on one
-1.6)
hit -3.5 -4.3
was
struck
ot
g 3.8
-1.8

For each of the k hypotheses, find
top k next words and calculate scores

t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - - Yi-1,)
1=1

-4.0 -4.8

tart in

2.8 Z _
) pie
1.7 ; 9
0.7 bt < 3, 4.5
< me

with

A

he p 3.3 -3.7
/ struc -2.5 with > a
-2.9
<START> -2.9 on one

< struck
got

9 -3.8
-1.8

\ 16 hit 3.5 4.3
was <
/
0

Of these k2 hypotheses,
just keep k with highest scores

t
Beam size =k = 2. Blue numbers = score(y, ..., y:) = Z log Pum(¥ilys, - - - Yi-1,)

-0.7

i=1

/h'e

<START>

\I

9

-4.0 -4.8
tart in
-2.8
1.7 Z pie » with 4.3
' a pie
hit -3.4 -4.5
me 3.3 3.7 tart
struck)
-2.5 with > a -4.6
-2.9
2.9 on one 5.0
-1.6))
hit -3.5 -4.3 pie
was
struck tart
got -3.8 5.3
-1.8

For each of the k hypotheses, find

top k next words and calculate scores

t
Beam size = k = 2. Blue numbers =score(y1, ..., 4:) = » _log Pum(¥ily1, - - -, ¥i-1,2)

i=1

-4.0 -4.8

in

A

tart
-2.8
1.7 Z pie with 4.3
: a ,

_ _ pie
0.7 bt < 3.4 4.5
< me

he 3.3 3.7 tart
/ struck 5 ith . q I
-2.9
<START> -2.9 on one 5.0

\ L6 hit -3.5 4.3 pie
was <
/ < struck tart
ot
_O g

9 3.8 5.3
1.8

This is the top-scoring hypothesis!

t
Beam size = k = 2. Blue numbers =score(yi, ..., yt) = Z log PLm(¥ily1s - - - s Yi—1,2)

-0.

7

i=1

\ 4

-4.8

in

/h'e

<START>

with

-4.3

-4.5
-3.7

pie

tart

\I

9

-4.0
tart
-2.8 Z _

i pie
- a 3.4
hit e

p me 3.3
struc .

-2.5 with
-2.9

-2.9 on
16 hit 3.5
was

struck

got 3.8
-1.8

\ 4

one

-4.3

-4.6

-5.0

pie

tart

-5.3

Backtrack to obtain the full hypothesis

Beam Search Decoding: Stopping Criterion

* Ingreedy decoding, usually we decode until the model produces a <tEND> token
* For example: <START> he hit me with a pie <END>

* In beam search decoding, different hypotheses may produce <tEND> tokens on different
timesteps
* When a hypothesis produces <END>, that hypothesis is complete.
* Place it aside and continue exploring other hypotheses via beam search.

* Usually we continue beam search until:
* We reach timestep T (where T is some pre-defined cutoff), or
* We have at least n completed hypotheses (where n is pre-defined cutoff)

LLMs: Introduction and Recent Advances I Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Beam Search Decoding: Finishing Up

* We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis y4, ..., ¥ on our list has a score

score(yi,...,yt) = log PLm(y1, .-, yt|x) = ZlogPLM(yz-\yl, sasq P15
i=1

Problem: longer hypotheses have lower scores

LLMs: Introduction and Recent Advances

Fix: Normalize by length. Use thls to select the top one instead:

_ZlOgPLM(yzkyla y Yi—1,T)
1=1

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

NMT: The First Big Success Story of NLP Deep Learning

Neural Machine Translation went from a fringe research attemptin 2014 to the leading standard method in

2016
e 2014: First seq2seq paper published [Sutskever et al. 2014]
e 2016: Google Translate switches from SMT to NMT - and by 2018 everyone had
* https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

B® Microsoft &svstran Google
BaimE ®Bwmme Tencentiil (O)migm

www-163.-com

* This was amazing!
* SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems

trained by small groups of engineers in a few months

Tanmoy Chakraborty

@?% LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

Issues With RNN

e Linear interaction distance
* Bottleneck problem
* Lack of parallelizability

ATTENTION

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

Target sentence (output)

A
4 A\

we had gone to the market <END>

Z I I O
Z — @
o (0] 0] @ (0] o o o) o) o o o S
o el . |©O @l |.|® S| O o oL _.|O o o o Q.
ke, e| |0 @ |'|O® 10 o ol “|O o O o) @
S (0] 0] @ (o) o o o o o o o By
c A Z

gH SR ™) <START> we had gone to the market

< ham baajairr gaye theJ
Source sentence (input) Any problems with this architecture?

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

This needs to capture all Target sentence (output)
information about the A

4 A\
source sentence.

Information we had gone to the market <END>
bottleneck!
Z \ O
Z p— @
o (0] 0] (0] (0] o 0] 0] o o o 0] S
& e| O | . |0 | O (0] oL . JO (0] o 0] Q
go) @ |0 @ |10 10 (0] o] 10 (@) o 0] @
8 0] 0] (0] (0] o (0] 0] o (0) o (0] v
c A Z
gH dVR Tl'a Q <START> we had gone to the market
N ham baajaar gaye theJ

v
Source sentence (input)

LLMs: Introduction and Recent Advances -- / ; m Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

* Attention provides a solution to the bottleneck problem.

* Core idea: on each step of the decoder, use direct connection to the encoder to focus on
a particular part of the source sequence

e | et’s start with the visualization of the attention mechanism.

LLMs: Introduction and Recent Advances =] Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

dot product

c
o v

._E 9

<

o o @ w)
'8 Z) [5) BY g

Z Z
c o |o Za
L (0] @ @
gl SR ™ <START>
< ham baajaar gaye theJ

v
Source sentence (input)

LLMs: Introduction and Recent Advances \ L Fl Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

dot product

Attention
scores
—

o (@ o
B8 Z 5 o .|o o 3
8 o 0] (0] @ % 8_
L 0] (0] (0] @
oH ®II\TII*{ l <START>
< ham baajaar gaye the
Y

Source sentence (input)

LLMs: Introduction and Recent Advances \ L Fl Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

dot product

Attention
scores
—

o (@ o
B8 Z 5 o .|o o 3
8 o 0] (0] @ % 8_
L 0] (0] (0] @
oH ®II\TII*{ l <START>
< ham baajaar gaye the
Y

Source sentence (input)

LLMs: Introduction and Recent Advances \ L Fl Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

dot product

Attention
scores
—

) w)
B8 Z 5 o .|o o 3
8 o 0] (0] @ % 8_
L 0] (0] (0] @
oH ®II\TII*{ l <START>
< ham baajaar gaye the
Y

Source sentence (input)

LLMs: Introduction and Recent Advances \ L Fl Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

On this decoder timestep, we are mostly

{ / focusing on the first encoder hidden state

s | e |

Attention
distribution

Take softmax to turn the scores
into a probability distribution

Attention
scores
—

O) o) o) w)
8 Z e| o 9) 28
e | |9 |9 H 28
L Qo @ Q @
g9 dNR T :L <START>
< ham baajaar gaye theJ
Y

Source sentence (input)

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden

c states.
S
% é The attention output mostly contains
E % information from the hidden states that
received high attention.
S 3
g S
z n
gz [(3] e
o Z e[|® Z o
0 e © Z %
l SoiR T <START>
< ham baajaar gaye theJ

v
Source sentence (input)

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

Attention we
output T
- Concatenate attention output
5 2 with decoder hidden state, then
% 5 use to compute y, as before
=5
-
c
o 9
8 3
z w
) o) 0 O
3Z o| o 23
== o) e 28
Lu . T T gz
gd dNR T <START>
< ham baajaar gaye theJ

v
Source sentence (input)

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

Attention had

Attention
distribution

Attention
scores
—

© o| (o] [e] [e o] (o .
L o| |o| |o| .o Jol o 2 B
O 0 o e[“|le 1o 0 Z9
5 o] (e |of |o o] |o 3
T T T T Sometimes we take the
) attention output from the
e dlviR <START> we___ | previous step, and also feed it
em baaja‘irr gaye the, into the decoder (along with
Source sentence (input) the usual decoder input).

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

Attention gone
output A
'g "5 { ..‘."’ ‘_.'. -‘ .".." /\
l®) o o
O —
£ + = oo _ []
2
c
o g8
S5
QO
E o
<<
gz %
53]
S 2 28
c Z o
L D

—> 0000

gH dNR T <START> we had
\ham baajaar gaye theJ
Y

Source sentence (input)

@?% LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

Attention to
output T

c — -
5 S I
€ 3
£ 5

2 _
< 5

Attention
scores
—

O) o) o) o) o o) o o w)
e el |e| Jo| |o Jol _Jof o[.o DS
3) (5} o} e ‘|® ’lo ol °|o o} % o)
T] o) o] o) o o o o] =)
gd dNR ™ l <START> we had gone
< ham baajaar gaye theJ
Y

Source sentence (input)

@?% LLMs: Introduction and Recent Advances U Gl

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

e | Attention the
output T
C -‘»‘ﬂ,“.\“\‘\ S 5,
S .© 7 Vs
25 '- T
c K
o=
0 -
©

Attention
scores
—

O) o) o) o) o) o o o) o o
L e| |o e| |o Jo ol Jo ol Jo o3
&} Qo @ | 10 10 o 10 o |10 % o
5) o) o o o) o o) o) o <
gH STNR T l <START> we had gone to
< ham baajaar gaye theJ

v
Source sentence (input)

@?% LLMs: Introduction and Recent Advances - Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Sequence-to-Sequence With Attention

) Attention market
®| output T
(0]
c 5 Ve
O 5 A
€ 3
O ‘T
£ 5
S
C
o wm
-; GLJ
2 9
z n
@ o o) o) o o) o) o) ol (o o
-8 % . S . ~ @ ~ O O) o > O = O = g
&) (0] (0] 1@ 10 o (0] o 10 710 % o)
o o o o) o o o o o o)
gH WNR M l <START> we had gone to the
\ham baajaar gaye theJ

v
Source sentence (input)

@?% LLMs: Introduction and Recent Advances

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention: In Equations

« We have encoder hidden statesh., ..., hy € R"
« Ontimestep t, we have decoder hidden state s, € R"
* We get the attention scores e' for this step:

t _ 1.7 T N
e’ =[s;hy,...,s; hy] €R
* We take softmax to get the attention distribution a' for this step (this is a probability distribution, sums to 1)
o' = softmax(e’) € RY
* We use a' to take a weighted sum of the encoder hidden states to get the attention output a,
N
a; = Z ath; € R"
i=1
* Finally we concatenate the attention output a, with the decoder hidden state s,and proceed

as in the non-attention seq2seq model
la;; s;] € R?P

LLMs: Introduction and Recent Advances S@] VBT el 99ty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention is Great

Attention significantly improves NMT performance
* [t’s very useful to allow decoder to focus on certain parts of the source
Attention solves the bottleneck problem
* Attention allows decoder to look directly at source; bypass bottleneck]
Attention helps with vanishing gradient problem a
* Provides shortcut to faraway states m’
Attention provides some interpretability entarté :.h
* By inspecting attention distribution, we can see what the decoder was
focusing on

* We get (soft) alignment for free!

* Thisis cool because we never explicitly trained an alignment system
* The networkjust learned alignment by itself

[]
with

he
hit
me
a

pie

LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Seq2Seq+Attention for LM

Attention unwillingly
output N

Concatenate (or otherwise

Y1 compose) the attention output with

T the current hidden state, then pass

through a softmax layer to predict
the next word

Attention
distribution
(_H

[l

Attention
scores

the students opened their books

LLMs: Introduction and Recent Advances ' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention is a General Deep Learning Technique

* \We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine
Translation.

 However: You can use attentionin many architectures (not just seg2seq) and many tasks (not just MT)
* More general definition of attention:

 Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the
values, dependent onthe query.

* We sometimes say that the query attends to the values.

 For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the
encoder hidden states (values).

Intuition:

* The weighted sum is a selective summary of the information contained in the values, where the query determines
which values to focus on.

* Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
(the values), dependent on some other representation (the query).

LLMs: Introductior: and Recent Advances ‘ Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

Encoding

_\3'
v
-
N
A 4
-y
w

N R

X4 Xy X3

Input Sequence

=) LLMs: Introduction and Recent Advances 7 | Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

Key vectors represent
what information is
encoded at each
encoder time step.

k1 I(2 k3
Encoding
h, > h, » h,
X, Xo X3
Input Sequence

LLMs: Introduction and Recent Advances

Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

Query vectors represent what
information we are looking for at each
K, K, Ks q, decoder time step.

Decoding

_\3'
v
-
N
A 4
-y
w
v
(7))
o

R I

X1 X2 X3 Y1

Input Sequence

LLMs: Introduction and Recent Advances 7 | Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

a a3 a3

softmax
! ! ! Softmax converts the similarity scores
e, e, e, into a probability distribution.

Dot product between query vector and
every key vector gives similarity score.

Decoding

_\3'
v
-
N
A 4
-y
w
v
(7))
o

R I

X Xy X3 Y1

Input Sequence

LLMs: Introduction and Recent Advances f=%=sd@ Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Attention

04 %) 03

softmax
! ! 1 The output of attention mechanism is
e, e, e, the weighted sum of hidden vectors.

Instead of simply summing up the
hidden vectors, we can transform them
using a learned function to generate
value vectors and then compute a
weighted sum.

Decoding

_\D'
v
-
N
-y
w
v
(7))
o

R I

X1 X2 X3 Y1

Input Sequence

LLMs: Introduction and Recent Advances LCS&' Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Variants of Attention

¢ Original formulation: a(q,k) = w7 tanh(W,[q; k])
® Bilinear product: a(q,k) = q’Wk Luong et al, 2015

o Dot prOdUCt: a(q, k) = qu Luong et al., 2015

q'k
® Scaled dOt prOdUCt: a(q, k) e s— Vaswani et al., 2017

More information: v | |

“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
https://arxiv.org/pdf/1703.03906.pdf

LLMs: Introduction and Recent Advances Tanmoy Chakraborty

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
http://ruder.io/deep-learning-nlp-best-practices/index.html#attention
https://arxiv.org/pdf/1703.03906.pdf

	Default Section
	Slide 1: Large Language Models: Introduction and Recent Advances ELL881 · AIL821
	Slide 2
	Slide 3: Sequence-to-Sequence Modeling
	Slide 4: Neural Machine Translation?
	Slide 5: Neural Machine Translation (NMT)
	Slide 6: Neural Machine Translation (NMT)
	Slide 7: Sequence-to-Sequence is Versatile!
	Slide 8: Neural Machine Translation (NMT)
	Slide 9: Training an NMT System
	Slide 10: Greedy decoding
	Slide 11: Problems With Greedy Decoding
	Slide 12: Exhaustive Search Decoding
	Slide 13: Beam Search Decoding
	Slide 14: Beam Search Decoding: Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Beam Search Decoding: Stopping Criterion
	Slide 29: Beam Search Decoding: Finishing Up
	Slide 30: NMT: The First Big Success Story of NLP Deep Learning
	Slide 32: Issues With RNN
	Slide 33: Attention
	Slide 34: Sequence-to-Sequence: The Bottleneck Problem
	Slide 35: Sequence-to-Sequence: The Bottleneck Problem
	Slide 36: Attention
	Slide 37: Sequence-to-Sequence With Attention
	Slide 38: Sequence-to-Sequence With Attention
	Slide 39: Sequence-to-Sequence With Attention
	Slide 40: Sequence-to-Sequence With Attention
	Slide 41: Sequence-to-Sequence With Attention
	Slide 42: Sequence-to-Sequence With Attention
	Slide 43: Sequence-to-Sequence With Attention
	Slide 44: Sequence-to-Sequence With Attention
	Slide 45: Sequence-to-Sequence With Attention
	Slide 46: Sequence-to-Sequence With Attention
	Slide 47: Sequence-to-Sequence With Attention
	Slide 48: Sequence-to-Sequence With Attention
	Slide 49: Attention: In Equations
	Slide 50: Attention is Great
	Slide 51: Seq2Seq+Attention for LM
	Slide 52: Attention is a General Deep Learning Technique
	Slide 53: Attention
	Slide 54: Attention
	Slide 55: Attention
	Slide 56: Attention
	Slide 57: Attention
	Slide 58: Variants of Attention

