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Neural Machine Translation?

* Neural Machine Translation (NMT) is a way to do Machine Translation with a single neural
network.

* The neural network architecture is called sequence-to-sequence (aka seq2seq) and it
involves two RNNSs.
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Neural Machine Translation (NMT)

The Sequence-to-Sequence Model

Encoding of the source sentence.
Provides initial hidden state
for Decoder RNN.

Encoder RNN
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Source sentence (input)

Encoder RNN produces an encoding of the source sentence.
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Neural Machine Translation (NMT)

The Sequence-to-Sequence Model Decoder RNNis a
| Target sentence (output) Language Model that
Encodmg of'th't-:j slohul;cde sentence. p A \ generates target
Provides initial hidden state he hit me  with @ pie <END> sentence, conditioned
for Decoder RNN. .
on encoding.
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Encoder RNN produces an encoding of the source sentence.
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Sequence-to-Sequence is Versatile!

* The general notion here is an encoder-decoder model
* One neural network takes input and produces a neural representation
* Another network produces output based on that neural representation
* If the input and output are sequences, we call it a seq2seq model

e Sequence-to-sequence is useful for more than just MT

* Many NLP tasks can be phrased as sequence-to-sequence:
* Summarization (long text > short text)
* Dialogue (previous utterances > next utterance)
* Parsing (input text - output parse as sequence)
* Code generation (natural language > Python code)
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Neural Machine Translation (NMT)

* The sequence-to-sequence model is an example of a Conditional Language Model
* Language Model because the decoder is predicting the next word of the target sentence y
* Conditional because its predictions are also conditioned on the source sentence x

* NMT directly calculates P(y|x)

P(yl.’lﬁ) — P(y1|$) P(y2|y1,$) P(y3|y11y21 :B) - - 'kp(yleln SR 3yT—17:B2
Y
Probability of next target word, given
target words so far and source sentence x

* How to train an NMT system?
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Training an NMT System
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Greedy decoding

* We saw how to generate (or “decode”) the target sentence by taking argmax on each step
of the decoder.

he hit me  with a pie <END>
& S £ £ = £ £
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<START> he hit  me with a pie

* Thisis greedy decoding (take most probable word on each step)

* Problems with this method?
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Problems With Greedy Decoding

Greedy decoding has no way to undo decisions!

Input: il a m’entarté (he hit me with a pie)
> he
>hehit____
>hehita  (whoops!no going back now...)

How to fix this?
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Exhaustive Search Decoding

* |deally we want to find a (length T) translation y that maximizes

P(y|z) = P(y1|x) P(yz2|y1, z) P(ysly1,y2, %) ..., Plyr|y1,- .-, Y7—1,)

T
— HP(ytlyla <. 7yt—17w)
t=1

* We could try computing all possible sequences y

e This means that on each step t of the decoder, we’re tracking V* possible partial
translations, where Vis vocab size

* This O(VT) complexity is far too expensive!
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Beam Search Decoding

* Coreidea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)
* kisthe beam size (in practice around 5 to 10)

* Ahypothesis y,, ..., ¥+ has a score which is its log probability:

t
score(yi, ..., yt) = log PLm(y1, - - -, ye|x) = ZlogPLM(yi|y1, a5 Wi—15 )

i=1
* Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

* Beam search is not guaranteed to find optimal solution
* But much more efficient than exhaustive search!

LLMs: Introduction and Recent Advances I Tanmoy Chakraborty



https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/

Beam Search Decoding: Example



Beam size=k = 2.

<START>

Calculate prob
distribution of next word




t
Beam size = k = 2. Blue numbers =score(yi,...,y:) = Z log PLv(¥ilyt, - - -5 Yi-1, )

=1

-0.7 =log P (he|<START>)

/h'e

<START>

\/

-0.9 = log Pyy (/| <START>)

Take top k words
and compute scores




t
Beam size = k = 2. Blue numbers =score(y1, ..., y:) = Y _log Pom(ilys, - - -

=1

-1.7 =log P (hit|<START> he) + -0.7

_0.7 hit
he <
struck
/ -2.9 = log P \(struck|<START> he) +-0.7
<START>
\ -1.6 = log P \,(was|<START> 1) + -0.9
was
/ <
ot
-0.9 J

-1.8 = log P\,(got|<START> 1) + -0.9

For each of the k hypotheses, find
top k next words and calculate scores
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t
Beam size =k = 2. Blue numbers = score(y1, ..., y:) = Z log PLm(Yilyas - - - Yi-1,T)

i=1
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Of these k2 hypotheses,
just keep k with highest scores
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Beam size =k = 2. Blue numbers =score(ys, ..., y:) = » _log Pum(yilys, - - -

-0.
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i=1

-2.8 =log P, (a|<START> he hit) +-1.7
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me
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was <
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got

-3.8 = log P y(struck|<START> | was) + -1.6
-1.8

For each of the k hypotheses, find
top k next words and calculate scores
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For each of the k hypotheses, find
top k next words and calculate scores
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This is the top-scoring hypothesis!
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Beam Search Decoding: Stopping Criterion

* Ingreedy decoding, usually we decode until the model produces a <tEND> token
* For example: <START> he hit me with a pie <END>

* In beam search decoding, different hypotheses may produce <tEND> tokens on different
timesteps
* When a hypothesis produces <END>, that hypothesis is complete.
* Place it aside and continue exploring other hypotheses via beam search.

* Usually we continue beam search until:
* We reach timestep T (where T is some pre-defined cutoff), or
* We have at least n completed hypotheses (where n is pre-defined cutoff)
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Beam Search Decoding: Finishing Up

* We have our list of completed hypotheses.

How to select top one with highest score?

Each hypothesis y4, ..., ¥ on our list has a score

score(yi,...,yt) = log PLm(y1, .-, yt|x) = ZlogPLM(yz-\yl, sasq P15
i=1

Problem: longer hypotheses have lower scores

LLMs: Introduction and Recent Advances
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NMT: The First Big Success Story of NLP Deep Learning

Neural Machine Translation went from a fringe research attemptin 2014 to the leading standard method in

2016
e 2014: First seq2seq paper published [Sutskever et al. 2014]
e 2016: Google Translate switches from SMT to NMT - and by 2018 everyone had
* https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

B® Microsoft &svstran  Google
BaimE ®Bwmme  Tencentiil  (O)migm

www-163.-com

* This was amazing!
* SMT systems, built by hundreds of engineers over many years, were outperformed by NMT systems

trained by small groups of engineers in a few months

Tanmoy Chakraborty
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Issues With RNN

e Linear interaction distance
* Bottleneck problem
* Lack of parallelizability

ATTENTION
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Attention



Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

Target sentence (output)

A
4 A\

we had gone to the market <END>

Z I I O
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c A Z

gH SR ™ ) <START> we  had gone to the market

< ham baajairr gaye theJ
Source sentence (input) Any problems with this architecture?
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Sequence-to-Sequence: The Bottleneck Problem

Encoding of the source sentence

This needs to capture all Target sentence (output)
information about the A

4 A\
source sentence.

Information we had gone to the market <END>
bottleneck!
Z \ O
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c A Z
gH dVR Tl'a Q <START> we had  gone to the market
N ham baajaar gaye theJ

v
Source sentence (input)
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Attention

* Attention provides a solution to the bottleneck problem.

* Core idea: on each step of the decoder, use direct connection to the encoder to focus on
a particular part of the source sequence

e | et’s start with the visualization of the attention mechanism.
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Sequence-to-Sequence With Attention

dot product

c
o v

._E 9

<

o o @ w)
'8 Z ) [5) BY g

Z Z
c o |o Za
L (0] @ @
gl SR ™ <START>
< ham baajaar gaye theJ

v
Source sentence (input)
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Sequence-to-Sequence With Attention

dot product

Attention
scores
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Sequence-to-Sequence With Attention

dot product

Attention
scores
—
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Sequence-to-Sequence With Attention

dot product

Attention
scores
—
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Sequence-to-Sequence With Attention

On this decoder timestep, we are mostly

{ / focusing on the first encoder hidden state

s | e |

Attention
distribution

Take softmax to turn the scores
into a probability distribution

Attention
scores
—

O ) o) o) w)
8 Z e| o 9) 28
e | |9 |9 H 28
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< ham baajaar gaye theJ
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Source sentence (input)
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Sequence-to-Sequence With Attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden

c states.
S
% é The attention output mostly contains
E % information from the hidden states that
received high attention.
S 3
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Source sentence (input)
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Sequence-to-Sequence With Attention

Attention we
output T
- Concatenate attention output
5 2 with decoder hidden state, then
% 5 use to compute y, as before
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Sequence-to-Sequence With Attention
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Sequence-to-Sequence With Attention
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Sequence-to-Sequence With Attention
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Attention: In Equations

« We have encoder hidden statesh., ..., hy € R"
« Ontimestep t, we have decoder hidden state s, € R"
* We get the attention scores e' for this step:

t _ 1.7 T N
e’ =[s;hy,...,s; hy] €R
* We take softmax to get the attention distribution a' for this step (this is a probability distribution, sums to 1)
o' = softmax(e’) € RY
*  We use a' to take a weighted sum of the encoder hidden states to get the attention output a,
N
a; = Z ath; € R"
i=1
* Finally we concatenate the attention output a, with the decoder hidden state s,and proceed

as in the non-attention seq2seq model
la;; s;] € R?P
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Attention is Great

Attention significantly improves NMT performance
* [t’s very useful to allow decoder to focus on certain parts of the source
Attention solves the bottleneck problem
* Attention allows decoder to look directly at source; bypass bottleneck ]
Attention helps with vanishing gradient problem a
* Provides shortcut to faraway states m’
Attention provides some interpretability entarté :.h
* By inspecting attention distribution, we can see what the decoder was
focusing on

*  We get (soft) alignment for free!

* Thisis cool because we never explicitly trained an alignment system
* The networkjust learned alignment by itself

[ ]
with

he
hit
me
a

pie
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Seq2Seq+Attention for LM

Attention unwillingly
output N

Concatenate (or otherwise

Y1 compose) the attention output with

T the current hidden state, then pass

through a softmax layer to predict
the next word

Attention
distribution
(_H

[l

Attention
scores

the students opened their books
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Attention is a General Deep Learning Technique

* \We’ve seen that attention is a great way to improve the sequence-to-sequence model for Machine
Translation.

 However: You can use attentionin many architectures (not just seg2seq) and many tasks (not just MT)
* More general definition of attention:

 Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the
values, dependent onthe query.

* We sometimes say that the query attends to the values.

 For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the
encoder hidden states (values).

Intuition:

* The weighted sum is a selective summary of the information contained in the values, where the query determines
which values to focus on.

* Attention is a way to obtain a fixed-size representation of an arbitrary set of representations
(the values), dependent on some other representation (the query).
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Encoding
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Attention

Key vectors represent
what information is
encoded at each
encoder time step.

k1 I(2 k3
Encoding
h, > h, » h,
X, Xo X3
Input Sequence
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Attention

Query vectors represent what
information we are looking for at each
K, K, Ks q, decoder time step.

Decoding

_\3'
v
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-y
w
v
(7))
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R I

X1 X2 X3 Y1

Input Sequence
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Attention

a a3 a3

softmax
! ! ! Softmax converts the similarity scores
e, e, e, into a probability distribution.

Dot product between query vector and
every key vector gives similarity score.

Decoding
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v
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X Xy X3 Y1

Input Sequence
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Attention

04 %) 03

softmax
! ! 1 The output of attention mechanism is
e, e, e, the weighted sum of hidden vectors.

Instead of simply summing up the
hidden vectors, we can transform them
using a learned function to generate
value vectors and then compute a
weighted sum.

Decoding
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Variants of Attention

¢ Original formulation: a(q,k) = w7 tanh(W,[q; k])
® Bilinear product: a(q,k) = q’Wk Luong et al, 2015

o Dot prOdUCt: a(q, k) = qu Luong et al., 2015

q'k
® Scaled dOt prOdUCt: a(q, k) e s— Vaswani et al., 2017

More information: v | |

“Deep Learning for NLP Best Practices”, Ruder, 2017. http://ruder.io/deep-learning-nlp-best-
practices/index.html#attention

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
https://arxiv.org/pdf/1703.03906.pdf
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